Maschinenbau-Wissen.de
Die Maschinenbau-Community
Maschinenbau-Wissen
Maschinenbau-Skripte
Maschinenbau-Webverzeichnis
Bücher-Shop
Maschinenbau-Suche

Den unelastischer Stoß berechnen

Anzeige

Ein unelastischer Stoß weist folgende Merkmale auf:

- Die Schwerpunkte der Stoßkörper liegen auf einer geraden Linie. Diese Verbindungsgerade steht senkrecht auf der Berührungsfläche, die sich beim Zusammenstoß der Körper ausbildet.
- Durch den Stoß entstehen keine elastischen Wechselwirkungen.
- Nach dem Stoß bewegen sich die Körper mit einer gemeinsamen Geschwindigkeit weiter
- Ein Teil oder die gesamte kinetische Energie wird in innere Energie (U) umgewandelt, die sich berechnen lässt.

Beispiele für unelastische Stöße sind der Zusammenstoß zweier Autos oder der Hammerschlag auf einen Nagelkopf. Ein unelastischer Stoß kann auch bei Atomen und Elementarteilchen auftreten.

Bei der Betrachtung von Ergebnissen, die sich aus der Berechnung unelastischer Stöße ergeben, ist zu beachten, dass es sich um Idealisierungen handelt, die in der Praxis nur annähernd auftreten. So wird beim ideal unelastischen Stoß der gesamte Anteil der kinetischen Energie in innere Energie umgewandelt. Nach dem Stoß „kleben“ die beiden Massen aneinander und bewegen sich gemeinsam mit derselben Geschwindigkeit v´2 fort.

Unelastischer Stoß - Berechnung

Bei vielen Anordnungen (z. B. Auffahrunfall), lässt sich ein elastischer Stoß mittels Impulserhaltungssatz berechnen. Hier ist es allerdings wichtig, die gesamte Anordnung als geschlossenes System, ohne Reibungseffekte zu betrachten.

Unelastischer Stoß - Berechnung

Anzeige

Es gelten die beiden Erhaltungssätze:

Unelastischen Stoß berechnen

Ekin – kinetische Energie (vor dem Stoß) [J]
kin – kinetische Energie nach dem Stoß [J]
U – innere Energie [J]
p – Impuls vor dem Stoß
p´ – Impuls nach dem Stoß

Kinetische Energie und Impuls vor dem Stoß:

Berechnung unelastischer Stoß

Ekin – kinetische Energie (vor dem Stoß) [J]
m1 – Masse 1
m2 – Masse 2
v1 – Geschwindigkeit von Masse 1 (vor dem Stoß)
v2 – Geschwindigkeit von Masse 2 (vor dem Stoß)
p – Impuls vor dem Stoß

Kinetische Energie und Impuls nach dem Stoß:

Kinetische Energie und Impuls nach dem Stoß

kin – kinetische Energie nach dem Stoß [J]
m1 – Masse 1
m2 – Masse 2
2 – Geschwindigkeit von Masse 2 nach dem Stoß
p´ – Impuls nach dem Stoß

Berechnung der Geschwindigkeit v´2 nach dem unelastischen Stoß

Die Geschwindigkeit v´2, die nach dem unelastischen Stoß vorliegt, lässt sich wie folgt berechnen:

Berechnung Geschwindigkeit nach Stoß

m1 – Masse 1
m2 – Masse 2
v1 – Geschwindigkeit von Masse 1 (vor dem Stoß)
v2 – Geschwindigkeit von Masse 2 (vor dem Stoß)
2 – Geschwindigkeit von Masse 2 nach dem Stoß

Fährt hingegen ein Pkw gegen einen Baum, wird die gesamte kinetische Energie in andere Energieformen, wie Deformation und Reibung umgewandelt, wobei die Höhe des Verlustes an kinetischer Energie das Maß der Zerstörung bestimmt. Hier gilt zur Berechnung der Energieerhaltungssatz der Kinetik.

Die innere Energie U lässt sich aus dem Energieerhaltungssatz berechnen:

innere Energie Stoß

Ekin – kinetische Energie (vor dem Stoß) [J]
kin – kinetische Energie nach dem Stoß [J]
U – innere Energie [J]
m1 – Masse 1
m2 – Masse 2
v1 – Geschwindigkeit von Masse 1 (vor dem Stoß)
v2 – Geschwindigkeit von Masse 2 (vor dem Stoß)

Anzeige
Anzeigen
x
Sitemap    |    Über    |    Impressum    |    Datenschutz    |    * = Affiliate-Link
2009 Maschinenbau-Wissen.de