Leistung von einem Drehmoment berechnen / Wellenleistung
In diesem Tutorial wird gezeigt wie man die Leistung von einem Drehmoment berechnen kann. Das bedeutet, es geht um die Berechnung der Leistung bei der Rotation gegen ein Drehmoment. Die Rede ist hier auch häufig von der sogenannten Wellenleistung. Sehen sie sich jedoch zunächst an, wie man die mechanische Leistung ganz allgemein ermittelt und was man unter dem Begriff Leistung versteht.
Mechanische Leistung allgemein
Unter dem Begriff Leistung versteht man Arbeit bzw. Energie* pro Zeiteinheit. Die Leistung wird mit dem Zeichen P gekennzeichnet. Die SI-Einheit ist W für Watt.
Die Leistung allgemein berechnen
Die Berechnung der Leistung P erfolgt über die Division von Arbeit durch Zeit bzw. Energie durch Zeit.
P - Leistung in Watt [W]
W - Arbeit in NewtonMeter oder Joule [1J = 1Nm]
E – Energie in NewtonMeter oder Joule [1J = 1Nm]
t - Zeit in Sekunden [s]
Die mechanische Leistung berechnen
Leistung von einem Drehmoment
Ein Drehmoment liegt vor, wenn zum Beispiel eine Welle rotiert und dabei gegen eine Kraft arbeiten muss. Bei einem Drehmoment M sieht die Berechnung der Leistung wie folgt aus:
mit
P - Leistung in Watt [W]
M – Drehmoment in NewtonMeter [Nm]
n – Drehzahl in Umdrehungen pro Sekunde [1/s]
π – Kreiszahl Pi (3,14159…), dimensionslos
ω - Winkelgeschwindigkeit
Für die Berechnung der Leistung eines Drehmoments kann auch die folgende vereinfachte Formel verwendet werden. Sie entspricht der vorhergehenden Berechnungsformel, nur dass alle Größen - bis auf das Moment M - im Term Winkelgeschwindigkeit ω zusammengefasst wurde.
P - Leistung / Wellenleistung in Watt [W]
M – Drehmoment in NewtonMeter [1Nm]
ω - Winkelgeschwindigkeit um eine Achse parallel zum Richtungsvektor [s-1]
Drehmoment-Leistung berechnen
Im Prinzip funktioniert die Berechnung der Wellenleistung genauso wie bei der Leistung einer Rotation, da auch hier die Welle mit einem Drehmoment rotiert. Durch das Einsetzen der Formel für die Drehzahl n löst sich die Gleichung wieder zu P=M·ω auf.